Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Experimental Heat Release Rate Analysis of a Diesel Engine Operating Under Steady State Conditions

1997-02-24
970889
An experimental heat release rate analysis was conducted on a six cylinder, 12.7 liter Detroit Diesel Series 60 turbocharged engine operating under steady state conditions. The overall chemical, or gross, rate of heat release and the net apparent rate of heat release were determined from experimental measurements. The gross, time averaged, heat release rate was determined by two separate concepts/methods using exhaust gas concentration measurements from the Nicolet Rega 7000 Real Time Exhaust Gas Analyzer and the measured exhaust gas flow rate. The net apparent rate of heat release was determined from the in-cylinder pressure measurements for each of the six cylinders, averaged over 80 cycles. These pressure measurements were obtained using a VXI based Tektronix data acquisition system and LabVIEW software. A computer algorithm then computed the net apparent rate of heat release from the averaged in-cylinder pressure measurements.
Technical Paper

Modeling of Direct Injection Diesel Engine Fuel Consumption

1997-02-24
971142
Due to their inherent high efficiency and the ease of starting once the engine is hot, turbocharged direct injection (TDI) diesel engines have emerged as one of the contending powerplants for PNGV hybrid vehicles. The interest in applying diesel engines in hybrid vehicles has prompted the modeling of direct injection diesel engine fuel consumption. The empirical equation developed in this study, which models engine friction and indicated efficiency as functions of engine operating speed and load, shows excellent agreement with test data gathered from public sources. The engine speed dependence of the friction and indicated efficiency are determined by fitting available data. Several assumed load dependences are considered. (If public data were available on engine cylinder pressure by crank angle as a function of engine speed and load, the load dependence could be determined empirically.)
Technical Paper

Permeability and Transient Thermal Response of Airbag Fabrics

1997-02-24
971063
The permeability of some airbag fabrics is determined, along with the Ergun coefficient signifying departure from purely viscous flow, from gas flow rates and pressure drop measurements. The dependency of these coefficients on the fabric temperature is also examined. Preliminary results are reported on the transient response of these fabrics to temporal changes in the gas flow rate and temperature. The temperature history is measured and compared with the predictions of some simple models. The models make various assumptions regarding the microscale of the fabrics. The preliminary results show that the very fine microscales do not control the time response of the fabric.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

A Parallel Hybrid Automobile with Less Than 0.1 kWh of Energy Storage

1996-04-01
961282
The paper describes a new hybrid vehicle design option having very low energy storage capability, and in particular, a parallel hybrid with hydraulic storage and reapplication of braking energy. The operating efficiency of the propulsion system at light loads is substantially improved by splitting the engine into two segments, and finding ways of shutting down one or both engine segments whenever possible. The hybrid vehicle utilizes primarily current technologies. A diesel powered parallel hybrid as described demonstrates a reduction in fuel consumption of 53.9% on a volume basis when compared with an equivalent baseline vehicle.
Technical Paper

Fuel Economy Analysis for a Hybrid Concept Car Based on a Buffered Fuel-Engine Operating at an Optimal Point

1995-02-01
950958
A hybrid car is conceptually described and analyzed which meets the goal of a factor of three improvement in fuel economy set by the government-industry collaboration, Partnership for a New Generation of Vehicles, announced Sept. 29, 1993. This car combines an internal combustion engine with a low-energy, but high-power capacity, storage unit, such as a capacitor or flywheel. The storage capacity is one-half kWh. All energy requirements are ultimately met from the fuel tank. Essentially all the performance achievements of current conventional cars are met by this hybrid. Two versions of the hybrid are considered: one in which the vehicle loads are the same as those of the average 1993 car, but the drive train is replaced with a hybrid system, and one, where, in addition, the vehicle loads are reduced, at fixed performance and interior volume, to levels slightly beyond the best achievements in current production vehicles.
Technical Paper

Automotive Demand, Markets, and Material Selection Processes

1994-03-01
940701
Cost reduction, quality improvement, and regulatory compliance are well-recognized competitive issues. Companies must excel along each of these fronts while operating in an environment of rapid and multi-faceted change, limited financial and human capital, and increasing product development time pressure. In addition, consumers are demanding automobiles that provide greater performance, function, and comfort while emitting lower emissions, consuming fewer gallons of gasoline, injuring fewer humans, and requiring fewer dollars to build and purchase. A solution to these seemingly conflicting objectives is to take a systems view of the product and industry. This paper explores the material decision process so that manufacturers, component suppliers, and material providers may better understand the interlocking web of compromises that shape the pursuit of value-added alternatives and avoidance of unprofitable compromises.
Technical Paper

Permeation of Gasoline-Alcohol Fuel Blends Through High-Density Polyethylene Fuel Tanks with Different Barrier Technologies

1992-02-01
920164
The automobile industry has been using high-density polyethylene (HDPE) as a material to fabricate fuel tanks. Because untreated HDPE is permeable to the primary constituents of gasoline, these fuel tanks are now being produced with various barrier technologies that significantly reduce this permeation rate. Four currently available barrier technologies are fluorination, sulfonation, coextrusion, and the laminar barrier technology. These technologies have successfully proven to decrease the permeation rate of pure gasoline. However, it is suspected that their effectiveness may be reduced when alcohols are introduced into the fuel blend. In this work, we determine the permeation rates of gasoline-alcohol fuel blends through HDPE by conducting tests on 22-gallon HDPE fuel tanks and on small HDPE bottles fabricated with and without these barrier technologies. The goal of this study is to provide a comprehensive evaluation of these four barrier technologies.
Technical Paper

The Effect of Secondary Fuel Injection on the Performance and Exhaust Emissions of An Open-Chamber Diesel Engine

1978-02-01
780786
Secondary injection in a diesel engine is defined as the introduction of additional fuel into the combustion chamber after the end of the main injection. It is usually caused by residual pressure waves in the high-pressure pipe line connecting the pump and injector. When these waves exceed the injector opening pressure, secondary injection occurs. Tests revealed that the U.S. Army TACOM single-cylinder engine used in this investigation, fitted with an American Bosch injection system, had secondary injection within the normal engine operating region. The pump spill ports and delivery valve were redesigned to eliminate secondary injection, in accordance with previously reported work. Comparative tests of both the conventional and modified injection systems were run on the same engine, and the effects of secondary injection on engine power, economy, and exhaust emissions were determined.
Technical Paper

Analysis and Control of Transient Flow in the Diesel Injection System Part II - Design Results of Controlled After-Injection

1973-02-01
730662
After-injection is the introduction of additional fuel to the combustion chamber after the end of the main injection. It is a persistent diesel fuel injection problem which usually results in reduced engine power and economy and increased emissions. After-injection is caused by uncontrolled pressure transients at the injector after the opening of the pump spill port. These pressure transients are related to the wave propagation phenomena in the high-pressure pipeline connecting the pump and injector. Use of experimental trial-and-error methods in attempts to control this phenomenon has met with limited success. The analytical control method described in another paper is used to determine design means by which after-injection may be controlled. Further investigation and evaluation of two design changes which release the injection system excess elastic energy in a controlled manner are considered herein. One design change is the addition of a control valve in the pump delivery chamber.
Technical Paper

Diesel Fuel Injection System Simulation and Experimental Correlation

1971-02-01
710569
A theoretical digital simulation of a conventional diesel fuel injection system has been developed. The influence of such factors as wave propagation phenomena, pipe friction, and cavitation are included. The computer results are compared with transient pressures as measured on an actual fuel injection system operated on a test bench. The comparisons show the accuracy and validity of this simulation scheme. Special attention is given to some of the important factors that affect the accuracy of the simulation model. These include the effect of pressure on the fuel bulk modulus and wave speed, the pipe line residual pressure, and the coefficient of discharge of important orifices.
Technical Paper

The Effect of Some Fuel and Engine Factors on Diesel Smoke

1969-02-01
690557
Possible mechanisms for smoke formation in the diesel engine are discussed. Emphasis is placed on the effects of some engine and fuel factors on carbon formation during the course of combustion, including cetane number, fuel volatility, air charge temperature, and after-injection. The tests were made with a single-cylinder, open chamber research engine, with three fuels, covering a wide range of inlet air temperatures and pressures. There is evidence that smoke intensity increased with increase in the cetaine number of the fuels with inlet air temperatures near atmospheric. Increase in the air charge temperature caused an increase in smoke intensity for volatile fuels and had an opposite effect on less volatile fuels for the open chamber engine used. The smoke intensity was found to increase dramatically with after-injection, with all other parameters kept constant. The concept that flame cooling is the main cause for smoke formation is examined.
Technical Paper

Automotive Nuclear-Heat Engines and Associated High-Temperature Materials

1957-01-01
570036
APPLICATION of nuclear energy for civilian automotive uses has possibilities, these authors say. Nuclear power for automotive applications, they feel, is technically feasible now where size and weight are not prime considerations; where size and weight are major parameters, discoveries of new materials for construction of nuclear-power reactors must be made. New materials are needed for reactor fuels, heat extractants, neutron reflectors, reactor construction materials, controls, and radiation shields which must have unique nuclear properties in addition to conventional engineering properties. This paper presents nuclear automotive propulsion devices in terms of technologies now available. The necessary radiation-shielding mass and weight requirements are presented for an ideal point-source nuclear-heat-power engine.
X